Dec 30, 2024  
2023-2024 College Catalog 
    
2023-2024 College Catalog [ARCHIVED CATALOG]

CHM 152IN - General Chemistry II [SUN# CHM 1152]

4 Credits, 6 Contact Hours
3 lecture periods 3 lab periods

Continuation of CHM 151IN . Includes emphasis on certain chemical concepts such as chemical kinetics, equilibrium, acids and bases, thermodynamics, and electrochemistry.

Prerequisite(s): CHM 151IN  with a grade of C or better. 
Gen-Ed: Meets AGEC - SCI; Meets CTE - M&S.



Button linking to AZ Transfer course equivalency guide    button image Prior Learning and link to PLA webpage

Course Learning Outcomes
  1. Define the rate of a reaction and the rate law, determine the components of the rate law, and describe the effects of concentration, temperature and catalysts on the rate of a reaction.
  2. Write and calculate equilibrium constants for a chemical reaction, calculate equilibrium concentrations from initial concentrations, apply Le Chatelier’s principle to a chemical reaction and predict how changes in concentration, temperature, pressure, and volume influence the equilibrium system.
  3. Distinguish between Arrhenius and Bronsted acids and bases, identify conjugate acid/base pairs, predict the direction of a neutralization reaction, determine dissociation constants (Ka,Kb), pH and pOH in aqueous solutions, and relate molecular structure to acid strength.

Performance Objectives:
  1. Define the rate of a reaction and the rate law, determine the components of the rate law, and describe the effects of concentration, temperature and catalysts on the rate of a reaction.
  2. Write and calculate equilibrium constants for a chemical reaction, calculate equilibrium concentrations from initial concentrations, apply Le Chatelier’s principle to a chemical reaction and predict how changes in concentration, temperature, pressure, and volume influence the equilibrium system.
  3. Distinguish between Arrhenius and Bronsted acids and bases, identify conjugate acid/base pairs, predict the direction of a neutralization reaction, determine dissociation constants (Ka,Kb), pH and pOH in aqueous solutions, and relate molecular structure to acid and base strength.
  4. Define equilibria of acid/base buffer systems, describe buffer capacity, buffer range, common ion effect, and discuss acid/base titration curves.
  5. Define the first and second laws of thermodynamics, predict the change in entropy for a chemical reaction, define Gibbs free energy ∆G, relate the sign of the free energy, enthalpy and entropy to the spontaneity of a chemical system, relating Gibbs free energy ∆G and the equilibrium constant K.
  6. Balance redox equations, use redox potentials to determine the relative strength of oxidizing and reducing agents, describe the construction and functioning of voltaic and electrolytic cells, determine the cell potential, and discuss applications of electrochemical principles in batteries, corrosion, and electrolysis.
  7. Apply the above chemistry concepts and procedures in a “wet” laboratory setting with real laboratory equipment to:
    1. continue the development of hands-on experience with a wide range of laboratory apparatus;
    2. continue to gain exposure to the hands-on use of chemical instrumentation;
    3. further individual expertise in a range of laboratory techniques;
    4. continue development of the ability to take hypotheses and design / conduct real experimentation to verify/challenge those hypotheses.

Outline:
  1. Chemical Kinetics
    1. Reaction rate, the rate law and its components
    2. Concentration-time relationships, integrated rate laws
    3. Effects of temperature and catalysts on reaction rates
    4. Reaction mechanisms
  2. Chemical Equilibria
    1. Equilibrium constant, solubility product, and reaction quotient
    2. Le Chatelier’s principle
    3. Precipitation reactions and the common ion effect
  3. The Chemistry of Acids and Bases
    1. Arrhenius and Bronsted concept of acids and bases
    2. Water and the pH scale
    3. Strong and weak acids and bases, acid/base dissociation constants
    4. Molecular structure and acidity
    5. Acid-base reactions
    6. Buffer solutions
    7. Acid/base titration curves
  4. Thermodynamics
    1. Thermodynamic versus kinetic control of a chemical reaction
    2. First and second laws of thermodynamics
    3. Gibbs free energy
  5. Electrochemistry
    1. Redox reactions
    2. Electrochemical cells
    3. Electrolysis
    4. Corrosion
    5. Applications of electrochemical principles in industry
  6. Optional topics:
  7. Thermochemistry
    1. Enthalpy changes for chemical reactions
    2. Calorimetry
    3. Hess’s Law and standard enthalpies of formation
  8. Solutions
    1. Solution concentrations
    2. Principles of solubility
    3. Colligative Properties
  9. Nuclear Chemistry
    1. Binding energy
    2. Fission, fusion
    3. Radioactivity
  10. Organic Chemistry
    1. Introduction to nomenclature
    2. Functional groups
    3. Simple reaction types
    4. Polymers


Effective Term:
Fall 2020